10 research outputs found

    Understanding bidirectional transformations with TGGs and JTL

    Get PDF
    In Model-Driven Engineering bidirectional model transformations emerged as an important ingredient to cope with scenarios such as change propagation, synchronization and to keep consistent system views whenever changes occurring on some view have to be propagated over the others. However, bidirectional mappings open a number of intricate issues that have been only partially solved by research.This paper identifies a set of features characterizing bidirectional transformations and validates them against two existing approaches. In particular, a scenario based on the UML2RDBMS transformation and consisting of two different configurations is implemented by means of two different approaches, such as Triple Graph Grammars and the Janus Transformation Language, for understanding bidirectional transformations with respect to the elicited features

    MoVES: A Model-Driven Methodology for Vehicular Embedded Systems

    Get PDF
    This paper introduces a novel model-driven methodology for the software development of real-time distributed vehicular embedded systems on single-and multi-core platforms. The proposed methodology discloses the opportunity of improving the cost-efficiency of the development process by providing automated support to identify viable design solutions with respect to selected non-functional requirements. To this end, it leverages the interplay of modeling languages for the vehicular domain whose integration is achieved by a suite of model transformations. An instantiation of the methodology is discussed for timing requirements, which are among the most critical ones for vehicular systems. To support the design of temporally correct systems, cooperation between EAST-ADL and the Rubus component model is opportunely built-up by means of model transformations, enabling timing-aware design and model-based timing analysis of the system. The applicability of the methodology is demonstrated as the proof of concepts on industrial use cases performed in cooperation with our industrial partners

    A Model-driven Development Approach with Temporal Awareness for Vehicular Embedded Systems

    No full text
    Considering the ubiquitousness of software in modern vehicles, its increased value and development cost, an efficient software development became of paramount importance for the vehicular domain. It has been identified that early verification of non functional properties of  vehicular embedded software such as, timing, reliability and safety, is crucial to efficiency. However, early verification of non functional properties is hard to achieve with traditional software development approaches due to the abstraction and the lack of automation of these methodologies.   This doctoral thesis aims at improving efficiency in vehicular embedded software development by minimising the need for late, expensive and time consuming software modifications with early design changes, identified through timing verification, which usually are cheaper and faster. To this end, we introduce a novel model-driven approach which exploits the interplay of two automotive-specific modelling languages for the representation of functional and execution models and defines a suite of model transformations for their automatic integration.   Starting from a functional model (expressed by means of EAST-ADL), all the execution models (expressed by means of the Rubus Component Model) entailing unique timing configurations are derived. Schedulability analysis selects the set of the feasible execution models with respect to specified timing requirements. Eventually, a reference to the selected execution models along with their analysis results is automatically created in the related functional model to allow the engineer to investigate them.   The main scientific contributions of this doctoral thesis are i) a metamodel definition for the Rubus Component Model, ii) an automatic mechanism for the generation of Rubus models from EAST-ADL, iii) an automatic mechanism for the selection and back-propagation of the analysis results and related Rubus models to design level and iv) a compact notation for visualising the selected Rubus models by means of a single execution model

    Bidirectionality in Model-Driven Engineering

    No full text
    In Model-Driven Engineering bidirectional model transformations emerged as an important ingredient to cope with scenarios such as change propagation, synchronization and to keep consistent system views whenever changes occurring on some view have to be propagated over the others. However, bidirectional mappings open a number of intricate issues that have been only partially solved by research. This master thesis identifies a set of features characterizing bidirectional transformations and validates them against two existing approaches. In particular, a benchmark based on the UML2RDBMS transformation and consisting of two different configurations is implemented by means of two different approaches, such as Triple Graph Grammars and the Janus Transformation Language, for understanding bidirectional transformations with respect to the elicited features

    Raising Abstraction of Timing Analysis through Model-Driven Engineering

    No full text
     The complexity of software running on vehicular embedded systems is constantly increasing and this negatively affects its development costs and time to market. One way to deal with these issues is to boost abstraction in the form of models to (i) ease the reasoning about the system architecture, (ii) automate certain stages of the development, (iii) early detect flaws in the system architecture through fundamental analysis and (iv) take appropriate countermeasures before the system is implemented. Considering the importance of timing requirements in the design of software for vehicular embedded systems, in this licentiate thesis we leverage Model-Driven Engineering for realizing a semi-automatic approach which allows the developer to perform end-to-end delay timing analysis on design models, without having to manually model timing elements and set their values. The proposed approach, starting from a design model of an automotive software functionality, automatically generates a set of models enriched with timing elements whose values are set at generation time. End-to-end delay timing analysis is run on the generated models and, based on the analysis results, the approach automatically selects the generated models which better meet a specific set of timing requirements

    Architecting and Analysing Connected Autonomous Vehicles

    No full text
    \ua9 2020 IEEE. This tutorial focuses on the vehicular domain, which is living a very interesting moment due to the many challenges the domain is experiencing, including autonomy of vehicles, vehicles that are becoming constituent systems in the system-of-systems context and many more. The ever-increasing software complexity in vehicles requires software architecture descriptions, which enable the software developers to compare and relate different products across different vehicle programs, development units, and organisations (in the vehicular ecosystem). Many vehicular functions are constrained by stringent timing requirements. The developers of these functions are required to analyse and verify these requirements at the software architecture level and often very early during the development process [1], [2]. In this context, the tutorial focuses on the design and timing predictability verification of vehicular software architectures for different Electrical and Electronic (E/E) architectures in connected and autonomous vehicles. The key takeaways of the tutorial are: i) an overview of the software development for various vehicular E/E architectures; ii) an overview of state of the art in the area; iii) understanding rudiments and value of timing analysis for this domain; iv) experience an industrial process for architecting and analysing the vehicle software via hands-on practice and demonstration

    Reference architectures modelling and compliance checking

    No full text
    Reference architectures (RAs) are successfully used to represent families of concrete software architectures in several domains such as automotive, banking, and the Internet of Things. RAs inspire architects when designing concrete architectures, and they help to guarantee compliance with architectural decisions, regulatory requirements, as well as architectural qualities. Despite their importance, reference architectures still suffer from a number of open technical issues, including (i) the lack of a common interpretation, a precise notation for their representation and documentation, and (ii) the lack of conformance mechanisms for checking the compliance of concrete architectures to their related reference architecture, architectural decisions, regulatory requirements, etc. This paper addresses these two issues by introducing a model-driven approach that leverages (i) a domain-independent metamodel for the representation of reference architectures and (ii) the combination of model transformation and weaving techniques for the automatic conformance checking of concrete architectures. We evaluate the applicability, effectiveness, and generalizability of our approach using illustrative examples from the web browsers and automotive domains, including an assessment from an independent practitioner

    Agile Islands in a Waterfall Environment: Challenges and Strategies in Automotive

    No full text
    Driven by the need for faster time-to-market and reduced development lead-time, large-scale systems engineering companies are adopting agile methods in their organizations. This agile transformation is challenging and it is common that adoption starts bottom-up with agile software teams within the context of traditional company structures. This creates the challenge of agile teams working within a document-centric and plan-driven (or waterfall) environment. While it may be desirable to take the best of both worlds, it is not clear how that can be achieved especially with respect to managing requirements in large-scale systems. This paper presents an exploratory case study focusing on two departments of a large-scale systems engineering company (automotive) that is in the process of company-wide agile adoption. We present challenges that agile teams face while working within a larger plan-driven context and propose potential strategies to mitigate the challenges. Challenges relate to, e.g., development teams not being aware of the high-level requirements, difficulties to manage change of these requirements as well as their relationship to backlog items such as user stories. While we found strategies for solving most of the challenges, they remain abstract and empirical research on their effectiveness is currently lacking
    corecore